Exam Stochastic Processes

June 2020

- You have from 15.00 until 18.30. This includes the time needed to take pictures of your work and upload it to nestor dropbox.
- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other aids.

Exercise 1 (20 pts)

Consider the Galton-Watson process with offspring distribution given by $\mathbb{P}(X=k)=(1-p) p^{k}$ for $k=0,1,2, \ldots$. Give the probability of extinction.
(Plus a derivation; clearly justify all your steps.)

Exercise $2(20 \mathrm{pts})$

State and prove the Paley-Zygmund inequality.
(You may use without proof the Cauchy-Schwartz inequality for random variables.)

Exercise 3 (20 pts)

Consider the following network, where all conductances are one and a, z are as indicated.

Determine the effective resistance and the escape probability.
(Make sure to clearly justify all your steps.)

Exercise 4 (20 pts)

Consider a Markov chain whose transition matrix is given by

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1
\end{array}\right)
$$

Does it have a unique invariant distribution? (Justify your answer.)
If X_{t} denotes the state at time t, what can you say about $\mathbb{P}\left(X_{t+1}=X_{t}\right)$ as $t \rightarrow \infty$?
Exercise 5 (20 pts)
Consider standard Brownian motion $(B(t))_{t \geq 0}$ and let $a<0<b$ be fixed. We define $T:=\inf \{t \geq$ $0: B(t) \in\{a, b\}\}$. So T is the first time you visit one of a and b. Show that the probability that you reach a before b equals

$$
\mathbb{P}(B(T)=a)=\frac{b}{|a|+b}
$$

(Hint: You may first want to take a, b rational and consider a comparison with the discrete symmetric random walk, appropriately embedded in B.)

